

WWRP CAS/CAeM AvRDP Workshop

MET ATM under CARATS

Collaborative Actions for Renovation of Air Traffic Systems

October 2018

Yuki Kato Japan Meteorological Agency (JMA)

Consideration of long-term vision

Collectative Actions for Renewation of Air Traffic Tr

• <u>2009~2010</u> <u>Development of long-term vision</u>

Establishment of "Study group for Promoting Renovation of the Air Traffic System"
 Development and promulgation of "Collaborative Actions for Renovation of Air Traffic Systems" (CARATS)

• <u>2010~2011</u> Development of roadmap for each measures

-Establishment of "Committee for Promoting Renovation of the Air Traffic System"

-Consideration of concrete measures and development of roadmap

There are five working groups and relevant ad-hoc groups and sub groups.

All of the groups carry out collaborative activities between airlines, research institutes, manufactures, JCAB, JMA and other government organizations.

Assessments with cost-benefit analysis are required before implementation of each measure.

Objectives of CARATS and Development of performance indicators

Development of indicators for checking the status of implementation of the CARATS measures Progressing CARATS measures steadily and monitoring and analyzing them continuously

Objective and Numerical target	Outline of indicator
1 Enhancing safety (Increase safety level by 5 times)	The number of aircraft accident and important incident resulting from ATC (the average number for the past five years)
2 Responding to the increase in air traffic volume (Double the air traffic control capacity in congested airspace)	(Under consideration)
	Punctuality : The rate of the arrival delay flights exceeding 15 minutes
3 Improving user conveniences (Improve services level by 10%)	Actual operation rate : The flight cancellation rate by the influence of the whether (the average rate for the past three years)
	Rapidness: Flight time of Gate-to-Gate of main routes.
4 Improving operational efficiency (Reduce fuel consumption per flight by 10%)	The amount of the fuel consumption per flight in main routes
5 Improving productivity of air traffics services (Improve productivity of air traffic services by	The flight plan operation number of each air traffic controller
50% or more)	The flight plan operation number to the maintenance expense (the average number for the past three years)
6 Responding to environmental issues (Reduce CO2 emissions per flight by 10%)	The amount of the CO2 emissions per flight in main routes
7 Enhancing the international presence of Japan in the aviation field	(Qualitative objective)

Objectives to be achieved by 2025 (clarifying numerical targets)

Direction of renovation in CARATS

meteorological phenomena

4

Measures of aviation weather in CARATS

CARATS

CARATS Roadmap

operational improvements: OI (improve operation)

enablers: EN (technology for enabling OI)

Measures of aviation weather

ALL Measures of aviation weather are enablers (EN)

Improved weather observation capabilities

Integration of observation data around aerodrome and air spaces

Improved weather forecast capabilities

- ·Development of NWP model with high frequency and resolution
- Expansion of forecast elements

Quantification of the impact of severe weather on capacity and other aircraft operations

- Estimation of impact on ATM using MET information
- Translation from MET data to airport/airspace capacity

MET information sharing infrastructure

Sharing of weather information with standardized format on SWIM environment

CARATS Roadmap

The roadmap specifies 64 measure that needs to be taken in order to achieve the CARATS, and categorizes them into measures intended to improve operation (operational improvements (OI)) and measures relating to technology necessary for enabling such improvement (enablers (EN)).

Please note that following table may different from current version.

Roadmap OI (1)

Sub-

Category Categor

Measure

ID 01-1

01-2

01-3

OI (operational improvements): measures intended to improve operation.

		01-5	airspace				\diamond		P	hase2 op	eration	using L/L			\diamond	Phase	e3 chang	e of sect	or bound	ary
		OI-4	Vertically separated airspace (High / Low airspace)				\diamondsuit		Phase	1 West-J		pace hase2 All	airspace	2						
	Flexible use of airspace	OI-5	Free routing for high altitude airspace				$\diamond \diamond \diamond$				iase3 imj		l UPR in co I	I ontinenta I R+DARP i	1	e Intal airsp	ace			
Airspace organization		OI-6	Dynamic variable airspace organization				\diamond \diamond \diamond	-	 ase1 part Phase2 cf		vertical t	oundary		rtical and	horizont	al bounda	ary			
	-	OI-7	Airspace organization suitable for TBO										\diamond		1					
		OI-8	Flow corridor															\diamond		
		OI-9	Accurate and flexible procedures for departures, arrivals and approaches	RNP Appro				\diamond	RNP Depai			\diamondsuit	Cur							
	Performa	OI-10	RNP operations with high accuracy including the "time" element						\diamond	Advanc	ed RNP									
	nce based operation s	OI-11	Low altitude en-routes for general aviation		\diamond	RNAV				Disscusi	on will b	e starte	d when	operato	rs reque	st RNPO.	3 again.			>
		01-12	Departure/arrival/approach procedures suitable for general aviation	Pin		y on prec	ision app	roach pr	ocedures	LP/L s suitable		eral aviati	on							

2010

Measure name

Variable sector boundaries

Dynamic use of training airspace

Dynamic variable use of terminal

7

Roadmap OI (2)

Category	Sub- Categor	Measure ID	Measure name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 以降
					\diamond	Phase1	L CDO usir	ig datalini	k (inbound	d from										
		OI-13	CDO and CCO				\diamond	Pha	se2 CDO	using data	alink (fron	n continer	ntal en-rou	ıte	ancemen !, etc.)	t				
									\diamond		ссо									
Pre-flight	Collaborat ive trajectory generatio	OI-14	Shared trajectories, weather information and constraints for aircraft operations					\diamond								\diamond	Enhar	icement (ATN-B2,	etc.)
	ns	OI-15	Collaborative coordination of trajectories prior to the flight								\diamond									
			Enhanced traffic management using CFDTs for multiple points based on the trajectory data				\diamond			1	1									
		OI-17	Conflict-free trajectories from gate to gate											\diamond						
		OI-18	Time-based management using CFDTs at single points (Initial CFDT																	
		OI-19	Time-based metering at merging points				\diamond	Phas	1	meterin hase2 dyr	g fix namic me	tering fi	¢			\diamond	Ph	ase3 Enha (ATN-B2		t
	Real- time	OI-20	Conflict detection using the trajectory information						\diamond											
	trajector y updates		Shared trajectory data via datalink / FLIPCY、FLIPINT、4DTRAD				of Soft	pment ar vare app ory based	lications	for		FLIPCY	FLP		4DTF	RAD				
		01-22	Real time trajectory revision supported by automation systems													\diamond	Enhan	cement (ATN-B2, e	etc.)
In-flight		OI-23	Improved efficiency of aerodrome operations			ation of me (Intro			DN	MAN, AM	AN, SMA	N		Efficie	ent overa	ll aerodr	ome			
		OI-24	Improved airport facilities to enhance throughput of airports					\diamond												
	High density	01-25	Improved throughput for closely separated parallel runways												\diamond		1			

Roadmap OI (3)

Category	Sub- Categor	Measure ID	Measure name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 以降
	operatio ns	OI-26	Reduced wake turbulence separation minima		R8	Ds and e	evaluatio	ns on the	Phase		tigate th	e impact		Phase3	jata to		ion/pre on of			
		01-27	Reduced separation minima for high density airspace (3NM for enroute)									\diamond		1		1				
		OI-28	Reduced separation minima for oceanic airspace																	
		OI-29-1	Improved capacity of ATC using datalink for routine communications / ATC clearance (airport) - DCL, D- TAXI	_	standa	oring the rdizatior	Internat n status/F	R&Ds	>\ \ \	D-	(OCL (Rev 7 NS-1/A+	ised) r (POA/M2			\diamond	Enhan	cement (/	ATN-B2, e	:tc.)
		01-29-2	Improved capacity of ATC using datalink for routine communications / ATC clearance (enroute) - continental CPDLC						Continen	tal CPDL	C (FANS	1/A+(PO	A/M2))			\diamond	Enhar	ncement (ATN-B2, e	etc.)
In-flight	High density operatio	01-29-3	Improved capacity of ATC using datalink for routine communications / Flight information services - D-ATIS, D-OTIS, D-RVR, D-HZWX	D-ATIS	Frial			oring the rdization		onal	-ATIS (F	ANS-1/A+	(POA/M2) r D-	D-OTIS RVR/HZV	vx	 	Enhar	ncement (ATN-B2, e	etc.)
	ns	OI-30-1	Air-to-air surveillance (ASAS) / ATSA- ITP operations			R&Ds evaluati			ATSA	A-ITP										
		OI-30-2	Air-to-air surveillance (ASAS) / ATSA- AIRB operations (1090ES)			R&Ds evalua			ATSA	AIRB										
		OI-30-3	Air-to-air surveillance (ASAS) / ATSA- AIRB Operations (UAT/TIS-B)			R&Ds a	nd evalu AIRB(ATSA-			í	ATSA-AIR	B(UAT)	ſ					
		OI-30-4	Air-to-air surveillance (ASAS) / ATSA- VSA operations			R&Ds evaluati			ATSA	-VSA										
		OI-30-5	Air-to-air surveillance (ASAS) / ASPA- IM operations						R&Ds	and eval	uations	on ASPA-	IM				\diamond	ASPA	-IM	

Roadmap OI (4)

Category	Sub- Categor	Measure ID	Measure name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 以降
In-flight	Improve d informati on	0I-31	Enhanced information in the cockpit		Inte standar	itoring thermation and dization and di	ne al status	in / obsta	Traff	ier inforn					Aerona					
	services	01-32	Improved information services for aircraft operators		Moni	toring th	e Interna	tional sta	andardiza	ation stat	us /		Provide	ed effecti to ope		nation				
Post- flight	Sharing and utilizing safety related informati on	01-33	Sharing and utilizing safety related information	Imp	lement S	SP	accum	ulation/a	nalysis/e	evaluation	n of acqu	ired safe	ty inform	ation	Study o time manag	risk ement		Real tir manag		

Roadmap EN (1)

EN (enablers): measures relating to technology necessary for enabling OI.

Roadmap EN (2)

	Category	Measure ID	Measure name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 以降
		EN-4-1	Enhanced weather observation data / Integration of observation data for airport and airspace				\diamond	Integra display observa	for			observ	gration d ation dat and airs	a for 刘						
		EN-4-2	Enhanced weather observation data / Enhanced observation data elements for airport and airspace				Weather ech			ll type of Wind P der obser	Profiler	$\mathbf{\Xi}$								
		EN-4-3	Enhanced weather observation data / Use of airborne observed weather data								\diamond	Utilizat	tion of we	eather da	ata obser	ved by ai	rcraft			
MET		EN-4-4	Enhanced weather observation data / New types of sensor data and enhancement of existing sensors		R&Ds a	nd evalu	ations or	existent	/new we	ather			on data u oe made	-						
	Weather information	EN-4-5	Enhanced weather observation data / Enhanced observation of volcanic ash		R&Ds an	d evaluat	ions on i	mproven	nents of	volcanic	Deci	ions will	be made	based or	۔ ۱					
		EN-5-1	Enhanced weather observation data / Use of enhanced observation data							м	ore accu	rate wea	ther fore	cast usin	g enhanc	ed obser	vation da	ıta		->
		EN-5-2	Enhanced weather observation data / More precise weather forecast models					nd resolut lata using												
		EN-5-3	Enhanced weather observation data / Provision of new weather forecast data			$\diamond \diamond \diamond$	Freque	nced wea nt forcast nced wea	data pro	ovision										
		EN-5-4	Enhanced weather observation data / Quantification of weather forecast error								\diamond	Quantif	ication of	f weathe	r forecas	t error				
		EN-6	Quantification of the impact of severe weather on capacity and other aircraft operations		,			relation elation b												

Roadmap EN (3)

Roadmap EN (4)

Examples of the recent activities on MET in CARATS

- Wind information detected by Doppler RADAR and LIDAR and measured by anemometer is converted into both graphic data and text data.
- Text data is transmitted to pilots in cockpits via the ACARS system.
- Airline operators can obtain graphic and text data from dedicated website (MetAir). 15

Examples of the recent activities on MET in CARATS

Improved weather forecast capabilities

Development of high resolution NWP model

20 25 30 35 40 45

Probabilistic forecast using NWP, e.g. TB index

Use of aircraft data via data-link

DAPs : Downlink Aircraft Parameters

Examples of the recent activities on MET in CARATS

MET integration into ATM decision support system

Current ATMet Category Forecast

Advanced product using Himawari-8

CBA: Cumulonimbus Areas MLUA: Mid/Low Cloud Unknown Areas RDCA: Rapidly Developing Cumulus Areas

09:10 UTC 09:20 UTC

17

Improvement of Low-Level Wind Information

ALWIN (Airport Low-level Wind INformation)

CARATS

Conventional Low-level Windshear Information of JMA

Overview of Wind Shear and Microburst Alert

Wind Shear Alert

Over 20 kt Increase or Decrease of Head Wind Component

Microburst Alert

Over 30 kt Decrease of Head Wind Component

(Example) 0837 34LA MBA 39kt- 3nm FNL

0837: Obs time in UTC

Arrival RWY Departure

Detection Area

- 34LA:34L (RWY) A: ARRIVAL D: DEPARTURE
- MBA: MBA (Microburst Alert)
 WSA (Wind Shear Alert)
- 39kt-: 39 kt (wind speed change) +:GAIN -:LOSS
 - 3nm FNL: 3 nm (Position) FNL (Arrival side) DEP (Departure side) RWY (Over Runway)

Collaborative Research with JAXA

To provide new WS information, JMA started a collaborative research with JAXA (Japan Aerospace Exploration Agency). JAXA developed information providing system, called LOTAS.

LOTAS

(Low-level Turbulence Advisory System)

Observation by compact RADAR/LIDAR near airport

ALWIN Provision Flow

- Wind information detected by Doppler RADAR and LIDAR and measured by anemometer is converted into both graphic data and text data.
- Text data is transmitted to pilots in cockpits via the ACARS system.
- Airline operators can obtain graphic and text data from JMA's website (MetAir).

Display of Flight Path Wind Information

For Airplane

OBS 2017/XX/XX 03:19Z

100 +10 220/24G41

1000

400 +11

300 +11

200 +11

H₩ DIR/SPD

---/--

220/29

220/29G41

230/30G41

220/28G41

220/28G42

+07 230/22G38 R21

----REMARKS----

BTN 180 - 30

BTN 340 - 30

BTN 170 - 30

GND +06 210/10G30 R08

03:19Z(OMIN)

H₩ GUST

XW GUST

XW SHEAR

500 +12 220/31G43 R29

XW

- -

R27

R27

R28

R26

R25

R22

RJAA RWY 16R

<-*->]

*

(*->]

<*->]

<-*->1

(-*-->

<--*->

<-*-->

(--*-->

<--*--

(--*---

--*-->

L20 0 R20

<-*-- 200

100

GND

+40 +20 0 -20

<Details: Wind direction/ speed on final approach path, wind shear distribution>

CARATS

Head wind gust detected between altitude 180-30ft Cross wind gust detected between altitude 340-30ft Cross wind shear detected between altitude 170-30ft

(in past 10 minutes)

23

Display of Airport Information For Operation Staff

For Airplane

CARATS

24

Display in a cockpit

, 25

Accuracy of ALWIN Wind

26

Utilization of aircraft-based observations (EN-4-3)

Utilization of aircraft-based observations in CARATS

EN-4-3 involves the utilization of in-situ aircraft-based observation data to improve situation awareness and accuracy of numerical weather prediction.

- 1. Wind direction and speed data calculated from DAPs (Downlink Aircraft Parameters) for SSR (Secondary Surveillance Radar) or WAM (Wide Area Multilateration)
- 2. Turbulence data using airborne EDR (Eddy Dissipation Rate) observation
- 3. Relative humidity data observed by water vapor sensors installed on aircraft

In FY2017, CARATS MET WG made a decision to revise the roadmap as below.

Before revision	Measure ID	Measure name	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 and beyond
	EN-4-3	Enhanced weather observation capability / Use of aircraft-based observations	\diamond	Utili	zation o	f aircraf	t-based o	bservati	ions			
		L			-	Z	F	-				
After revision	Measure ID	Measure name	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 and beyond
			\diamond	Utilizati	on of in	-situ airc	raft-base	d observ	vations b	y DAPs		
	EN-4-3	Enhanced weather observation capability / Use of aircraft-based observations				\diamond	Utiliz	zation of	in-situ E	DR		
				Utilizat	on of in	-situ mo	sture ob	sevation	s by sen	sors new	y attach	ed on aircraft

Utilization of wind direction and speed data calculated from DAPs

- In Japan, airframes that can directly downlink wind data as DAPs are very few (less than 1% of the registered airframes).
- Wind direction and speed can be calculated using dynamic information of DAPs, such as air speed, ground speed, magnetic heading, and true track angle.

CARATS

- ENRI (Electronic Navigation Research Institute) validated the quality of wind data calculated from DAPs downlinked to ENRI's experimental radar stations and confirmed that the data meet WMO's desired accuracy (WMO No.958: Aircraft Meteorological Data Relay (AMDAR) Reference Manual).
- Positive impact on JMA's numerical weather prediction model was found.

With wind data from DAPs, locations of convective clouds and shear lines of surface wind are predicted closer to actual observation.

Expectations for the improvement of accuracy

Utilization of DAPs data was endorsed by the CARATS Steering Committee in March 2018. Implementation is postponed for 1 year in accordance with JCAB's preparation plan of SSR or WAM.

Utilization of in-situ EDR

- In FY2018, the MET WG conduct a study on utilization of EDR (defined as the cube root of the eddy dissipation rate) downlinked from aircraft as a metric of turbulence intensity.
- Following points are considered as possible advantages.
 - Objectivity of observation data
 - Expectations for improvement of prediction accuracy
 - Possibility for reducing workloads of pilots and ATCs
- Decision will be made by FY2020, because EDR is already ICAO standard in Annex 3.

Utilization of in-situ relative humidity observations

- Currently, water vapor sensor has been implemented in some airlines in the United States.
- Further study on water vapor sensor implementation is required for future implementation, including;
 - Possible benefit (e.g. improvement of numerical weather prediction)
 - Technical/financial issues for installation

- In the CARATS project of Japan, renovation of Air Traffic System has been discussed among various stakeholders, such as government organizations, research institutes, manufacturers and airlines.
- The measures relating aeronautical meteorology will be effective to address increase of air traffic, to improve safety and efficiency on aircraft operations, and to realize Trajectory-based Operation (TBO) which is one of the main directions of renovation in CARATS.

Thank you ! 謝謝!